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Perceptual learning alters post-sensory 
processing in human decision-making
Jessica a. Diaz, Filippo Queirazza and Marios G. Philiastides*

An emerging view in perceptual learning is that improvements in perceptual sensitivity are not only due to enhancements in 
early sensory representations but also due to changes in post-sensory decision-processing. In humans, however, direct neuro-
biological evidence of the latter remains scarce. Here, we trained participants on a visual categorization task over three days and 
used multivariate pattern analysis of the electroencephalogram to identify two temporally specific components encoding sen-
sory (‘Early’) and decision (‘Late’) evidence, respectively. Importantly, the single-trial amplitudes of the Late, but not the Early 
component, were amplified in the course of training, and these enhancements predicted the behavioural improvements on the 
task. Correspondingly, we modelled these improvements with a reinforcement learning mechanism, using a reward prediction 
error signal to strengthen the readout of sensory evidence used for the decision. We validated this mechanism through a robust 
association between the model’s decision variables and the amplitudes of our Late component that encode decision evidence.

Consider an image intelligence analyst inspecting a large array 
of noisy closed-circuit television or satellite images in order to 
identify targets that might pose a real security threat. Her ability 

to perform this task successfully depends on her years of experience in 
interpreting such images. This example highlights that training and 
experience are required to induce long-lasting improvements in our 
ability to make decisions based on ambiguous sensory information. 
The process leading to such improvements is commonly referred  
to as perceptual learning1,2. Despite the prevalence and obvious 
utility of this phenomenon in everyday life (learning in an ever-
changing environment to make better predictions and plan future 
actions), its neural substrates and how these affect decision-making 
remain elusive.

Several psychophysical studies have offered evidence linking 
perceptual learning with enhancements in early sensory represen-
tations3–9 and with changes in post-sensory processing relating to 
attention and decision-making10–12. In line with the latter account 
(that is, late influences), recent experimental work in non-human 
primates13,14 has offered compelling evidence that perceptual learn-
ing in decision-making can affect how early sensory representations 
are interpreted downstream by higher-level areas to form a decision.

Correspondingly, recent functional magnetic resonance imag-
ing (fMRI) experiments in humans started to address the question 
of whether perceptual learning affects later processing stages15–18.  
So far, however, little has been done to make use of time-resolved 
electrophysiological signatures that can accurately differentiate 
between early stimulus encoding and late decision-related process-
ing. Here, we test the extent to which perceptual learning alters 
post-sensory encoding of decision evidence in humans by recording 
electroencephalography (EEG) data during a perceptual discrimi-
nation experiment (distinguishing whether a noisy image repre-
sents a face or car; Fig. 1a) over the course of three days.

Previously, using this task and single-trial multivariate discrimi-
nant analysis of the EEG, we identified two temporally distinct 
neuronal components that discriminated between the stimulus 
categories: an ‘Early’ component that occurred around 170 ms after 
stimulus presentation and a ‘Late’ component that occurred around 
300 ms post-stimulus19–23. We showed that the Late component  

was a better predictor of behaviour than the Early one20; it system-
atically shifted later in time with perceived task difficulty19 and  
was a significantly better predictor of trial-by-trial changes in the  
rate of evidence accumulation (drift rate) in a drift diffusion 
model19,23. Finally, whereas the Early component amplitudes 
remained unaffected when the same (face/car) stimuli were coloured 
red or green and the task was switched to colour discrimination, 
those of the Late component were reduced almost to zero19,22,23. Taken 
together, these findings indicated that the Early component encodes 
the incoming sensory evidence, whereas the Late component 
indexes post-sensory, decision-relevant evidence. These previous  
findings establish a benchmark against which to evaluate the extent 
to which perceptual learning influences earlier versus later stages  
of decision-making.

Specifically, here we test how activity associated with each of 
these Early and Late EEG components is affected by training. We 
hypothesize that if perceptual learning primarily alters post-sensory 
encoding of decision evidence, discrimination performance for our 
Late but not the Early component should systematically increase 
across the three training sessions. Similarly, as perceptual sensitivity  
improves with training, we expect the Late component to move 
earlier in time, reflecting a decrease in perceived task difficulty. 
Moreover, our ability to make use of single-trial variability in the 
EEG will offer a mechanistic characterization of these effects by 
establishing whether improvements in discrimination are a result of 
gain modulation (that is, amplification of the differential response) 
of the component amplitudes, a reduction in the trial-to-trial vari-
ability (noise) of the component amplitudes or both.

Finally, we explore the possibility that these improvements 
can be understood in terms of a reinforcement learning mecha-
nism14,17,24–26, whereby the connections between early and late 
decision-processing stages are strengthened through a reward  
prediction error, gradually enhancing the readout of relevant infor-
mation and leading to improved perceptual sensitivity.

results
We collected behavioural and EEG data from 14 participants during 
a speeded categorization task (identifying an image as either a face 
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or car) using noisy stimuli that varied in the amount of available 
sensory evidence (that is, phase coherence of the stimuli). Visual 
feedback was provided for each response before the presentation of 
the next stimulus (Fig.  1a). Participants performed the same task 
on three consecutive days. Using a mixed-effects logistic regres-
sion analysis, we found that accuracy was significantly improved 
(χ (1)2  =  19.37, P <  0.001, Fig. 1b; degrees of freedom (1)) over the 
three training days. Using a mixed-effects linear regression analysis, 
we found that reaction times were significantly reduced over the 
three training days (χ (1)2  =  8.92, P <  0.003, Fig.  1c). As expected, 
we also found a main effect of stimulus difficulty, with accuracy 
increasing (χ (1)2  =  28.08, P <  0.001) and reaction times decreas-
ing (χ (1)2  =  21.24, P <  0.001) with the amount of sensory evi-
dence, respectively. There was no interaction between the amount 
of sensory evidence and training day on either measure (accuracy: 
χ (1)2  =  0.16, P =  0.68; reaction times: χ (1)2  =  0.383, P =  0.54).

Next, we sought to identify the Early (sensory) and Late (deci-
sion-related) EEG components that discriminate between face and 
car trials, and to investigate how these are affected by training. To 
this end, we used a single-trial multivariate discriminant analysis27,28 
to identify linear spatial weightings of the EEG sensors that best 
discriminated between the two trial types. For each participant, we 
estimated, within short pre-defined time windows of interest, a pro-
jection in the multidimensional EEG space (that is, a spatial filter) 
that maximally discriminated between the two categories on stim-
ulus-locked data (equation (1); see Methods). Applying this spatial 

filter to single-trial data produced a measurement of the resultant 
discriminating component amplitude (henceforth y). Component 
amplitudes can be thought of as indexing the quality of the evidence 
in each trial, in that a high positive amplitude reflects an easy face 
trial, an amplitude near zero reflects a difficult trial, and a high 
negative amplitude reflects an easy car trial (Fig. 2a). We used the 
area under a receiver operating characteristic curve (the Az value) 
with a leave-one-out trial cross-validation procedure to quantify 
the discriminator’s performance (that is, the degree of separation  
in the single-trial amplitude distributions associated with each  
stimulus category).

Our discriminator’s performance as a function of stimulus-
locked time revealed the presence of two temporally specific compo-
nents (Fig. 2b; Early: mean peak time 187 ms; Late: mean peak time 
431 ms), consistent with our previous work19–23. Most inportantly, 
even though both the Early and Late components reliably discrimi-
nated between image categories, only the discrimination perfor-
mance for our Late component appeared to increase systematically 
across the three training days. To formally test for this effect we 
extracted subject-specific peak Az-values for each of the Early and 
Late components and ran a mixed-effects linear regression analysis 
with training day, component (Early versus Late) and their interac-
tion as separate  predictors. We found a significant main effect of 
training day (χ (1)2  =  7.61, P =  0.006), a main effect of component 
(χ (1)2  =  5.0371, P =  0.025) and a significant interaction between the 
two (χ (1)2  =  7.46, P =  0.006), indicating that discriminator perfor-
mance for the Late component increased systematically across train-
ing days, whereas that of the Early component remained unchanged 
(Fig. 2c). Taken together, these results provide compelling evidence 
that it is primarily the encoding of the decision evidence in the Late 
component, rather than the sensory evidence in the Early compo-
nent, that is being enhanced in the course of training.

In previous work20, we showed that, unlike the Early component, 
the peak time of the Late component moved later in time as per-
ceived task difficulty increased, consistent with longer integration 
times for more difficult decisions29–31. Here, we use this finding to 
provide additional evidence linking the Late component with the 
process of learning. Specifically, we hypothesized that the latency 
of the Late component should move earlier in time as learning 
unfolds (and choices become easier). Using a separate mixed-effects 
linear regression analysis, we found a significant main effect of 
training day χ (1)2    =  21.56, P <  0.001), a main effect of component 
(χ (1)2  =  51.3, P <  0.001) and a significant interaction of the two 
(χ (1)2  =  51.75, P <  0.001) on component peak times, indicating that 
the Late component peak times were reduced systematically across 
training days, whereas those of the Early component remained 
unchanged (Fig. 2d). These findings reinforce the notion that it is 
the temporal dynamics of the Late decision-related component that 
change as a function of training.

To better understand the mechanism by which improvements in 
discrimination performance for the Late component came about, 
we capitalized on the single-trial variability in the component 
amplitudes. Specifically, we tested whether there was an increase 
in the distance between the mean face and car component ampli-
tudes in the Late component ( −y yf c; Fig. 3a, top), a reduction in the 
trial-by-trial variability around those means ((σyc,f); Fig. 3a, bottom) 
or a combination of both. We ran a mixed-effects linear regression 
analysis, with the amount of sensory evidence, training days and 
their interaction as separate predictors.

As expected from previous findings20,22,23 we found a main effect 
of the amount of sensory evidence on the means (χ (1)2  =  11.52, 
P <  0.001, Fig.  3b) but not on the variance of these component 
amplitudes (χ (1)2  =  0.38, P =  0.53, Fig.  3c). Crucial to this work, 
we also found a main effect of training day on the mean responses 
(χ (1)2   6.72, P =  0.009, Fig.  3b), but not on the variance of these 
component amplitudes (χ (1)2  =  2.76, P =  0.1, Fig. 3c). No significant  
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Figure 1 | experimental design and behaviour. a, Schematic representation 
of the experimental paradigm. Subjects had to categorize a noisy image 
presented for 50 ms as a face or a car and indicate their choice with a 
button press within 1,250 ms following the stimulus presentation. Feedback 
was then presented for 500 ms (a tick or a cross, for a correct or an 
incorrect response, respectively) followed by an inter-stimulus interval 
(ISI) that varied randomly between 1 and 1.5 s. Subjects performed this 
task on three consecutive training days. A sample face image (upper row) 
and car image (lower row) at the two levels of phase coherence used in 
the task (32.5% and 37.5%) are shown on the right. b,c, The proportion 
of correct choices (b) and mean reaction times (RTs) (c) as a function 
of the three training days (day 1: blue; 2: green; 3: red) and the two levels 
of phase coherence of the stimuli, averaged across subjects. Faint lines 
represent individual subject data. Error bars represent standard errors 
across subjects.
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interaction effects of sensory evidence and training day were 
observed (χ (1)2  =  0.03, P =  0.86 and χ (1)2  =  0.25, P =  0.61, means 
and variance respectively). These results suggest that the improve-
ments in discrimination performance for the Late component over 
the course of training are primarily the result of gain modulation 
(that is, enhanced sensory readout leading to amplification of the 
differential response) of the component amplitudes rather than a 
reduction in the trial-to-trial variability in these amplitudes.

To establish a concrete link between our EEG component ampli-
tudes and improvements in behaviour we ran a separate logistic 
regression analysis whereby trial-by-trial changes in the ampli-
tudes (y) of the Early and Late components over all training days 
were used to predict participants’ choices on individual trials (that 
is, probability of face choice, coded as 1 (0) for face (car) choices, 
respectively). Using the resulting subject-specific regression coef-
ficients, we found that our Late component was both a reliable pre-
dictor of participants’ choices (t-test, t(13) =  11.52, P <  0.001) and 
a significantly better predictor compared to the Early component 
(paired t-test, t(13) =  2.949, P =  0.011).

Although the novelty of our work rests primarily on the EEG 
results, we also tested the view that the observed perceptual  

improvements in behaviour might involve a reinforcement-learn-
ing-like mechanism similar to that proposed for reward-based learn-
ing14,17,26,32. To this end, we modelled our participants’ choices using 
a reinforcement learning model (see Methods). In brief, the model 
makes choices based on a decision variable, with positive values 
indicating a higher likelihood of a face choice and negative values 
indicating a higher likelihood of a car choice. The decision variable 
reflects the representational strength of the presented stimulus on a 
given trial and corresponds to the stimulus sensory evidence scaled 
by the absolute difference between its signal weight and a noise 
weight for the antagonistic stimulus. Whereas the role of the for-
mer is to enhance the sensory readout of the presented stimulus, the  
latter captures the extent to which the antagonistic stimulus inter-
feres with the processing of the available sensory evidence.

In the reinforcement learning framework used here, these 
weights are updated by means of a prediction error signal, which 
quantifies the discrepancy between the expected and actual value 
of the decision outcome on each trial. To account for the possibil-
ity that signal and noise weights may be differentially updated the 
prediction error signal is scaled by separate learning rates in each of 
the two weight updates. The mechanism of this update is such that 

3.6

Early com
ponent

Late com
ponent

P < 0.01

0
Stimulus-locked time (ms)

A
z

Day 1
Day 2
Day 3

Early Late

b

C
om

po
ne

nt
 o

ns
et

 ti
m

e 
(m

s)

550

450

350

250

150

Early

d

1 3
Training day

a

0
Trials

Better faces
(worse cars)

Better cars
(worse faces)

0.9

0.8

0.7

0.6

0.5

Su
bj

ec
t-

sp
ec

ifi
c 

A
z

0.8

0.7

0.6

0.5

1
Training day

2

–2

2

–2

Early

Late

c

2.4

1.2

0

–1.2

y 
tr

ai
ni

ng
 w

in
do

w
 (μ

V
)

–

–2.4

–3.6

50 100 150

Late cars

Early cars

Late faces

Early faces

200 400 600 800 2 3 2

μV

μV

Late

Figure 2 | Post-sensory effects of perceptual learning. a, Single-trial discriminator amplitudes (y) for the Early (dashed lines) and Late (solid lines) 
component windows for faces (black) and cars (grey) at 37.5% phase coherence from a representative subject on the third training day. The component 
amplitudes are shown as histograms on the right, with a cutoff (the thick black line) to separate trials into positive versus negative amplitudes, indicating 
a higher likelihood of a face and a car trial, respectively. b, Multivariate discriminator performance (Az), quantified by a leave-one-out (LOO) trial cross-
validation procedure, during face-versus-car outcome discrimination of stimulus-locked EEG responses across the three training days (1: blue; 2: green; 
3: red), averaged across subjects, showing the presence of the Early and Late components. The dotted line represents the average Az value leading to a 
significance level of P =  0.01, estimated by using a bootstrap test. Faint lines represent individual subject data. c, Average discriminator performance and 
scalp topographies for the Early (magenta) and Late (cyan) components across the three training days estimated at the time of subject-specific maximum 
discrimination. Faint lines represent individual subject data. Error bars represent standard errors across subjects. d, Average onset times for the Early 
(magenta) and Late (cyan) components across the three training days. Faint lines represent individual subject data. Error bars represent standard errors 
across subjects.
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paired t-test: t1vs2 (13) =  6.74, P <  0.001; t2vs3 (13) =  2.35, P =  0.02) 
revealed a significant effect of learning as observed in behaviour.

To offer neurobiological validity to the model, we performed 
two additional analyses. First, we correlated the single-trial deci-
sion variables estimated by the model with our EEG component 
amplitudes. We predicted that if the brain computes a version of 
our model-based decision variables to drive choices then one 
should observe a systematic amplification of the decision vari-
able with training and a significant correlation with our Late EEG 
component shown to index decision evidence. To this end, we ran 
another regression analysis whereby the single-trial amplitudes of 
our Early and Late components were used to predict the model’s 
decision variables. We found that our Late component was both a 
reliable predictor of the model’s decision variables (Fig.  4f; t-test, 
t(13) =  21.81, P <  0.001) and a significantly better predictor than the 
Early component (Fig. 4f; paired t-test, t(13) =  3.06, P =  0.009).

Second, we separated our trials into four bins (quartiles) based on 
the model-predicted magnitudes of the prediction error (PE) signal, 
which is thought to guide learning. We then ran a single-trial dis-
criminant analysis on feedback-locked EEG data between the very 
low and very high PE trial groups (that is, we kept the middle two 
quartiles as ‘test’ data; see below). This analysis revealed a centropa-
rietal EEG component peaking on average at 354 ms post-feedback  
(Fig. 5a). The timing and topography of this component are con-
sistent with previous work on feedback-related processing in the 
human brain using a probabilistic reversal learning task33,34.

To test formally whether this EEG component was parametrically 
modulated by the magnitude of the PE signal, we computed discrim-
inator amplitudes (y) for trials with intermediate magnitude levels 
(those left out from the original discrimination analysis). Specifically, 
we applied the spatial filter of the window that resulted in the highest 
discrimination performance for the extreme PE magnitude levels to 
the EEG data with intermediate values. We expected these ‘unseen’ 
trials to show a parametric response profile such that the result-
ing mean component amplitude at the time of peak discrimination 
would proceed from very low <  low <  high <  very high PE magni-
tude. Using this approach, we demonstrated that the mean discrimi-
nator output for each quartile increased as a function of the model’s 
PE magnitude (all pair-wise t-test comparisons across adjacent trial 
groups: P values <  0.001; Fig. 5b), thereby establishing a concrete 
link between the model’s PE estimates and our feedback-related EEG 
component. Taken together, these findings provide further evidence 
that perceptual learning enhances decision-related evidence, prob-
ably through a reinforcement-learning-like mechanism.

Discussion
In this work, we have offered evidence from time-resolved elec-
trophysiological signals in humans linking perceptual learning 
with post-sensory processing during a perceptual categorization 
task. Specifically, we showed that improvements in behavioural 
performance were accompanied primarily by late enhancements 
in decision-related evidence. In particular, we demonstrated that 
single-trial amplitudes of a late EEG component indexing decision 
evidence19,20,23,35 were amplified in the course of learning, such that 
these representations became more robust to noise (rather than a 
reduction in noise as such). In contrast, a temporally earlier compo-
nent encoding sensory (stimulus) evidence — even in the absence 
of a face/car decision task19 — was not affected by training. These 
findings suggest that it is the strengthening of the connections 
between early sensory encoding and downstream decision-related 
processing that are driving perceptual learning in our task.

Crucially, we also showed that the onset of the late component 
(which on average coincides with the onset of decision evidence accu-
mulation36–38) systematically moves earlier in time with training. This 
finding is particularly interesting since we have previously observed 
comparable temporal shifts in this component while manipulating 

on a given trial a correct choice will always lead to an increase of 
the chosen stimulus signal weight and to a decrease of the unchosen 
stimulus noise weight, yielding enhanced signal to noise ratio for 
the correctly chosen stimulus. Crucially this update is also scaled by 
the chosen stimulus representation, which exerts a further consoli-
dating effect on perceptual learning (see Methods).

We fitted the model to individual participant data and found a 
highly significant correspondence between the model’s accuracy 
predictions and actual behaviour (r =  0.882, P <  0.001; Fig. 4a). We 
also compared the model with two competing alternatives (a model 
with signal and noise weights updated with only one learning rate 
and a model with only a single perceptual weight) using Bayesian 
model selection that accounts for inter-subject variability by treat-
ing each model as a random effect. We found that our model pro-
vided a better fit to the observed choice behaviour (see Methods 
and the histogram in Fig. 4a). Consistent with an enhanced readout 
of sensory evidence, we observed a subject-wise gradual build-up 
in the trial-by-trial estimates of the decision variables (Fig.  4b). 
Correspondingly, we observed a gradual increase in the model’s 
signal weights mirrored by a gradual decrease in the noise weight 
estimates (Fig. 4c). Between-day comparisons (1 versus 2, and 2 ver-
sus 3) of subject-wise mean decision variables (Fig. 4d; paired t-test: 
t1vs2 (13) =  − 6.77, P < 0.001; t2vs3 (13) =  − 2.36, P= 0.02) and aggre-
gate perceptual weights (Fig.  4e; signal weights: paired t-test: t1vs2 
(13) =  − 6.74, P <  0.001; t2vs3 (13) =  − 2.36, P =  0.02; noise weights: 
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task or stimulus difficulty19,20,23. We view this as additional evidence 
that our learning effects on the late component lead to changes in 
perceptual sensitivity. More specifically, the earlier the onset time of 
the late component, the stronger the behavioural improvements, con-
sistent with a decrease in perceived task difficulty. These temporal 
changes are also in line with a faster and more efficient accumula-
tion of evidence as often predicted by sequential sampling models 
of decision-making29–31 (for example, increases in the drift rate and 
decreases in the variability of the non-decision time parameters of 
these models).

Consistent with previous accounts14,17, we also showed that 
these learning-induced behavioural improvements could be reli-
ably explained in terms of a reinforcement learning mechanism39. 
More specifically, we showed that a model that uses a prediction 
error signal24,25,40,41 to continuously adjust the stimulus specific per-
ceptual weights on the sensory evidence26 led to amplification of the 
relevant stimulus representations in the course of training (making 
them more robust to noise). We further demonstrated that trial-
by-trial changes in our Late EEG component, which was shown 
to index decision evidence, reliably tracked the amplification of 
sensory information predicted by the model. These results imply 
that perceptual learning involves an enhanced readout of sensory 
information during decision-making, probably through a process 
similar to reinforcement learning, endorsing the view of a domain-
general learning mechanism24. Although it is true that our task did 

not involve any explicit reward as a reinforcer, we view the implicit 
rewarding nature of correct responses as a ‘teaching signal’ for 
strengthening the neural representation of sensory contingencies26.

Research on perceptual learning has recently focused on the 
extent to which perceptual learning is due to improvements in 
sensory abilities that are (informationally and temporally) earlier 
than the decision process itself or due to improvements in post-
sensory and decision-related processing. Consistent with the for-
mer account, several psychophysics studies have demonstrated that 
perceptual learning is often highly specific to the location and other 
properties of the stimuli3–9, implying specificity to the trained reti-
nal location42,43. Similarly, fMRI human studies offered evidence of 
activity enhancements in retinotopic areas corresponding to the 
trained visual fields44 and increased responses along the whole 
hierarchy of early visual areas that correlated with improvements 
in behavioural performance following training over the course of 
several weeks45,46. These results are further corroborated by EEG 
recordings in humans showing post-training improvements in early 
visually evoked components over occipital electrode sites47–49 and 
electrophysiological recordings in non-human primates linking 
behavioural performance with improvements in perceptual sensi-
tivity in primary sensory areas50–52.

In contrast, other psychophysical studies have proposed that per-
ceptual learning can also arise from changes in how sensory signals 
are read out or interpreted by decision-making mechanisms32,53,54 

200 400 800
Trials

–2.0

–1.0

0

1.0

2.0

M
od

el
 D

V
 (a

.u
.)

Day 1
Day 2
Day 3

b

Component

0

0.6

0.4

0.2

LateEarly

Be
ta

s 
(a

.u
.)

f

0.7

0.8

0.9

1.0

0.7 0.8 0.9 1.0
Accuracy (behaviour)

A
cc

ur
ac

y 
(m

od
el

)
a Day 1

Day 2
Day 3

High coh.
Low coh.

–3.0

3.0

M
od

el
 w

ei
gh

ts
 (a

.u
.)

c
Day 1
Day 2
Day 3

Cars
Faces

Day

21 3

e
Day 1
Day 2
Day 3

0

1.2

0.8

1.6

Day

21 3

M
od

el
 | D

V
|  (

a.
u.

)

d
Day 1
Day 2
Day 3

0.4

6000 200 400 800
Trials

6000

0

Signal weights

Noise weights

2

1

0

–1

–2

M
od

el
 w

ei
gh

ts
 (a

.u
.) Si

gn
al

N
oi

se

0

0.5

1

Weights
Learning
rates

Ex
ce

ed
an

ce
pr

ob
ab

ili
ty

4 
1

4
2

1
1

Figure 4 | reinforcement learning model for perceptual choices. a, Scatter plot showing the correlation between the performance of individual  
subjects and models, over the three training days and the two levels of stimulus phase coherence (using the winning model). Inset: exceedance 
probabilities of three competing models (see Methods for details). coh., coherence. b, Individual trial estimates of the model’s decision variable (DV)  
for a representative subject over the course of the three training days, superimposed on the amount of stimulus-defined sensory evidence (black trace).  
c, Signal (positive) and noise (negative) perceptual weights for faces (solid lines) and cars (dashed lines) over the three training days for the same subject 
shown in b. d, Average magnitude of the model’s decision variables across subjects over the course of the three training days. Individual subject data are 
also shown as point estimates. e, Average signal (positive) and noise (negative) perceptual weights for faces (brightly coloured bars, left) and cars (faintly 
coloured bars, right) over the three training days. Individual subject data are also shown as point estimates. f, Average regression coefficients (betas) 
reflecting the trial-by-trial association between the model’s decision variables and the amplitudes of the Early and Late EEG components estimated over all 
training days. Individual subject data are also shown as point estimates.
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rather than from changes in primary sensory areas as such. Neural 
evidence in support of this interpretation comes from electro-
physiology studies on non-human primates13,14, demonstrating  
that perceptual learning on a motion discrimination task affects 
downstream decision accumulator areas, rather than regions encod-
ing the sensory evidence (that is, motion direction). Specifically, 
accumulator neurons improved responsiveness to the decision 
evidence in the course of learning (as reflected in steeper evidence 
accumulation slopes), with these improvements being proportional 
to the animals’ performance on the task. Correspondingly, recent 
fMRI studies in humans started to explore the effect of learning on 
the activity and connectivity patterns of higher-level ventral tempo-
ral55,56 and decision-related regions15–18.

These seemingly discrepant accounts of the temporal locus of 
perceptual learning may be reconciled by considering differences 
in the experimental demands of the task at hand. For example,  
a recent theoretical account proposed a unified two-stage model  
of perceptual learning57–59. According to this model, there are  
two distinct types of plasticity underlying perceptual learning: 
feature-based plasticity and task-based plasticity. On the one hand,  
feature-based plasticity affects early sensory processing stages and 
occurs with mere exposure to stimuli, regardless of whether the 
stimuli are relevant to the task. Task-based plasticity, on the other 
hand, can be thought of as a higher-level processing stage arising 
from direct and active involvement in a behavioural task. In this 
formulation, the relative contribution of the two plasticity types 
to the overall enhancement in performance hinges largely on the 
training procedures, the stimuli and the intricacies of the task used 
in learning60.

More specifically, a distinction could be drawn between tasks 
that involve learning of relatively primitive stimulus features such 
as orientation, spatial frequency or contrast and those using more 
complex stimuli such as objects and faces59. Although learning  
of highly primitive features could occur locally at the level of early 
sensory processing, more complex stimuli (made up of a com-
bination of primitive features) might require active involvement 
of downstream higher-level sensory or decision-related areas.  

In our design, for instance, complex object categories are used, and 
phase discrimination, which is shown to involve processes beyond  
the early visual cortex61, is required to perform the task reliably. 
Our findings thus appear to rely heavily on the enhancement of the 
relevant stimulus representations during post-sensory rather than 
early sensory processing.

In summary, our study provides insights into the neurobiology 
of perceptual learning and offers strong support to the notion that 
neuronal plasticity can occur at multiple time-scales and locations, 
depending on task demands and context. As such, our findings can 
help to revise existing theories of perceptual learning focusing only 
on early sensory processing and to provide a foundation on which 
future studies can continue to interrogate the neural systems under-
lying perceptual decision-making.

Methods
Participants. Fourteen subjects (seven female and seven male, age range 
23–28 years) participated in this study. All were right-handed, had normal or 
corrected-to-normal vision and reported no history of neurological problems.  
The study was approved by the College of Science and Engineering Ethics 
Committee at the University of Glasgow (CSE01353), and informed consent  
was obtained from all participants.

Stimuli. We used a set of 18 face and 18 car images (image size 512 ×  512 pixels, 
8-bits per pixel), adapted from our previous experiments19,20. Face images 
were selected from the Face Database of the Max Planck Institute of Biological 
Cybernetics62, and car images were sources from the Internet. Both image types 
contained equal numbers of frontal and side views (up to ± 45 degrees). All images 
were equated for spatial frequency, luminance and contrast, and they all had 
identical magnitude spectra (average magnitude spectrum of all images in the 
database). We manipulated the phase spectra of the images using the weighted 
mean phase63 technique to change the amount of sensory evidence in the stimuli 
as characterized by their percentage phase coherence. We selected two levels 
of sensory evidence for this study (32.5% and 37.5% phase coherence) that are 
known to yield performance spanning the psychophysical threshold, based on our 
previous studies19,20. A Dell Precision Workstation (Intel Core 2 Quad) running 
Windows 7 (64 bit) with an ATI FirePro 2270 graphics card and PsychoPy 1.8 
presentation software64 controlled the stimulus display. Images were presented on 
a Dell 2001FP TFT monitor (resolution, 1,600 ×  1,200 pixels; refresh rate, 60 Hz). 
Subjects were positioned 75 cm from the monitor, and each image subtended 
approximately 6 ×  6 degrees of visual angle.

Behavioural task. Subjects performed a simple image categorization task whereby 
they had to classify an image either as a face or car. The stimulus was presented 
for 50 ms, and subjects were asked to make a response as soon as they had formed 
a decision, with a response deadline set at 1.25 s. Subjects indicated their decision 
with a button press on a response device (Cedrus RB-740) using their right index 
and middle fingers for a face and a car response, respectively. Subjects received 
visual feedback following each response that lasted for 500 ms. A tick and a cross 
were presented for a correct and an incorrect response, respectively (subtending 
0.7 ×  0.7 degrees of visual angle). A cross was also shown when subjects failed to 
make a response within the pre-allocated duration of 1.25 s following the stimulus. 
Feedback was followed by an inter-trial interval that varied randomly in the range 
between 1 and 1.5 s. There were a total of 288 trials (divided equally between the 
two image categories and the two levels of sensory evidence), presented in four 
blocks of 72 trials with a 60-s rest period between blocks. The entire experiment 
lasted approximately 20 minutes. Each subject performed this task on three 
consecutive days, with the experiment taking place at the same time on each 
day. On the first day, subjects performed a short practice session of the face/car 
categorization task with stimuli of high percentage phase coherence (50%) to 
familiarize themselves with the structure and pace of the task.

EEG data acquisition. EEG data were collected inside an electrostatically shielded 
booth using a 64-channel EEG amplifier system (BrainAmps MR-Plus, Brain 
Products, Germany) and recorded using Brain Vision Recorder (BVR; Version 
1.10, Brain Products, Germany) with a 1,000-Hz sampling rate and an analogue 
bandpass filter of 0.016–250 Hz. The EEG cap consisted of 64 Ag/AgCl actiCAP 
electrodes (Brain Products, Germany) positioned according to the international 
10–20 system of electrode positioning. The ground electrode was embedded  
in the EEG cap and placed along the midline between electrodes Pz and Oz.  
The reference electrode was placed on the left mastoid. All input impedances were 
kept below 10 kΩ . For each participant, an effort was made to position the EEG 
cap in a consistent manner across the three training days, by keeping the distance 
between electrodes and certain anatomical landmarks (outer canthi, inion, nasion) 
constant. Experimental event codes and button responses were also synchronized 
with the EEG data and collected using the BVR software.
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Figure 5 | electrophysiological correlates of prediction error (Pe).  
a, Multivariate discriminator performance (Az), quantified by a leave-one-
out (LOO) trial cross-validation procedure, during very low versus very 
high PE magnitude trials on feedback-locked EEG responses averaged 
across subjects and days revealing a late PE component. Discriminator 
performance and component peak times were comparable across the 
three days. The dotted line represents the average Az value leading to 
a significance level of P =  0.01, estimated using a bootstrap test. Faint 
lines represent individual subject data. Inset: average scalp topography 
associated with the PE component, estimated at the time of subject-specific 
maximum discrimination. b, Mean discriminator amplitude (y) for the PE 
component, binned in four quartiles based on model-based estimates of 
the magnitude of the PE, showing a clear parametric response along the 
four trial groups. Quartiles 1 and 4 were used to train the classifier, while 
quartiles 2 and 3 contain ‘unseen’ data with intermediate PE magnitude 
levels. Individual subject data are also shown as point estimates.
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EEG pre-processing. We performed basic pre-processing of the EEG signals offline 
using MATLAB (MathWorks, Natick, Massachusetts). Specifically, we applied  
a 0.5-Hz high-pass filter to remove d.c. drifts, and 100-Hz low-pass filter to  
remove high-frequency artefacts not associated with neurophysiological processes. 
These filters were applied together, non-causally to avoid distortions caused  
by phase delays (using MATLAB ‘filtfilt’). The EEG data were additionally  
re-referenced to the average of all channels.

Eye-movement artefact removal. Prior to the main experiment, we asked our 
participants to complete an eye movement calibration task during which they  
were instructed to blink repeatedly upon the appearance of a fixation cross  
in the centre of the screen and then to make several horizontal and vertical 
saccades according to the position of the fixation cross. The fixation cross 
subtended 0.4 ×  0.4 degrees of visual angle. Horizontal saccades subtended  
15 degrees and vertical saccades subtended 10 degrees. This exercise enabled  
us to determine linear EEG sensor weightings corresponding to eye blinks and 
saccades (using principal component analysis) such that these components were 
projected onto the broadband data from the main task and subtracted out27.

Single-trial discriminant analysis. To discriminate between face and car trials, 
we applied a linear multivariate classifier to stimulus-locked EEG data, using 
the sliding window approach that we used in previous work20,65. Specifically, we 
identified a projection of the multichannel EEG signal, xi(t), where i =  [1… T] 
and T is the total number of trials, within a short time window that maximally 
discriminated between the two stimulus categories. All time windows had a 
width of Ν =  50 ms, and the window centre τ  was shifted from − 100 to 1,000 ms 
relative to stimulus onset, in 10 ms increments. More specifically, we used logistic 
regression27 to learn a 64-channel spatial weighting, w(τ), that achieved maximal 
discrimination at each time window, arriving at the one-dimensional projection 
yi(τ), for each trial i and a given window τ:

∑τ τ=
τ

τ

= −

= +
⊥y

N
tw x( ) 1 ( ) ( ) (1)i

t N

t N

i
/2

/2

where ⊥  is used to indicate the transpose operator. Note that our classifier is 
designed to return activity from processes that help to maximize the difference 
across the two conditions of interest while minimizing the effect of processes 
common to both conditions. In doing so, the classifier tries to map positive 
and negative discriminant component amplitudes (yi(τ)) to face and car trials, 
respectively. In other words, large positive values indicate a higher likelihood of a 
face stimulus, large negative values indicate a higher likelihood of a car stimulus, 
and values near zero reflect more difficult stimuli (see Fig. 2a for an example). This 
procedure, in effect, scales the resulting discriminating component amplitudes 
in a manner that is directly comparable across the three training days. The same 
discrimination procedure was also applied on feedback-locked data to discriminate 
between trials with low and high prediction error magnitudes (as estimated by our 
model; see below).

We quantified the performance of the discriminator at each time window  
using the area under a receiver operating characteristic (ROC) curve, referred  
to as an Az value, using a leave-one-out trial procedure66. Furthermore, we  
used a bootstrapping technique to assess the significance of the discriminator  
by performing the leave-one-out test after randomizing the trial labels.  
We repeated this randomization procedure 1,000 times to produce a probability 
distribution for Az, and estimated the Az value leading to a significance  
level of P <  0.01.

Given the linearity of our model we also computed scalp topographies  
of the discriminating components resulting from equation (1) by estimating  
a forward model as:

τ = τ τ
τ τ⊥a

x y
y y

( )
( ) ( )

( ) ( )
(2)

where yi(τ) is now organized as a vector y(τ ), where each row is from trial i,  
and xi(t) is organized as a matrix, x(τ ), where rows are channels and columns  
are trials, all for time window τ. These forward models can be viewed as scalp  
plots and interpreted as the coupling between the discriminating components  
and the observed EEG27.

Single-trial regression analyses. To analyse the behavioural and neural  
data resulting from our EEG discrimination analysis, we use a mixed-effects 
general linear modelling (GLM) approach. These GLM models are similar  
to repeated-measures ANOVA models, but they offer a better account for  
inter-subject response variability (by incorporating subjects as a random effect) 
and allow the mixing of both continuous and categorical variables67,68. Details  
of the dependent and predictor variables used for each regression analysis are  
given in the main text. The significance of a predictor variable or set of variables 
is tested using a log-likelihood ratio test, whereby the log-likelihood of the model 
with all predictors is compared with the log-likelihood of the model without  
the predictors being tested. The difference in the log-likelihood of two models  

is distributed according to a χ2 distribution whose degrees of freedom equal  
the difference in the number of parameters in the two models. We fit these  
mixed-effects models using the lme4 package (https://cran.r-project.org/web/
packages/lme4/index.html) using R (http://www.r-project.org). We note that 
repeating these analyses using a conventional ANOVA approach yields virtually 
identical results, further highlighting the robustness of our effects.

To demonstrate that our Late EEG component was a better predictor of 
behaviour than the Early one, we ran a separate logistic regression analysis. 
Specifically, for each participant the trial-by-trial discriminant amplitudes  
(y values) for the two components (over all training days) were used as  
separate regressors to predict each participant’s face choice probabilities (P(f)) on 
individual trials (that is, P(f) =  1 [0] for face [car] choices) as:













= + β β β− + +P f e( ) 1 / 1 (3)y y0 1 Early 2 Late

Then, to establish a more reliable trial-by-trial association between Late brain 
activity and choice behaviour, we tested: (1) whether the Late regression 
coefficients across subjects (β2) come from a distribution with mean greater than 
zero (using a one-sample t-test) and (2) whether the Late regression coefficients 
across subjects (β2) come from a distribution with mean greater than those of the 
Early one (β1) (using a paired t-test). For all analyses, we provide exact P values 
where possible, but values below 10−3 are abbreviated as such (that is, P <  0.001).

Reinforcement learning model. We used a variant of the Rescorla–Wagner 
reinforcement learning model to account for perceptual improvements in  
the course of learning14,17,26. In this model perceptual decisions are driven  
by a decision variable (DV) denoting the subject’s hidden representations of 
sensory contingencies (that is, association between sensory evidence and  
stimulus category). The strength of such representations is modulated by dynamic 
updates of category-specific perceptual weights based on feedback information, 
thereby accounting for potential differences in learning trajectories between the 
stimulus categories. Indeed, compared with previous work that used a single 
stimulus-invariant perceptual weight14,17, the introduction of category-specific 
perceptual weights is designed to capture subject-wise choice biases, in that 
subjects might have a choice bias towards cars or faces and likewise might  
display an increasing ability to recognize cars or faces throughout the task.

Moreover, our perceptual weights comprise signal and noise weights.  
While the former is designated to enhance stimulus representation in the course 
of learning, the latter accounts for the interference exerted by the antagonistic 
stimulus against the acquisition of the correct sensory contingencies. Thus, in  
our model, perceptual learning is expected to occur through gradually increasing 
signal weights as well as gradually decreasing noise weights. Compared with 
previous reinforcement-learning-like perceptual models14,17, this better captures 
instances whereby improved task performance depends both on greater ability 
to recognize a given stimulus and on greater ability to rule out the antagonistic 
stimulus. In other words, on a face trial, subjects might correctly choose face  
partly because they are able to identify face-like features and partly because they 
are able to recognize that there are no car-like features.

More specifically, on each trial i, decision activities specific to each stimulus 
category ∈A( , stim {face, car})stim  were estimated as the stimulus-specific 
sensory evidence (Estim) scaled by the absolute difference between the  
stimulus-specific signal weight (vstim) and the noise weight of the antagonistic 
stimulus (n\stim):

= | − |
= | − |

A E v n

A E v n
(4)

i i i i

i i i i
face face face car

car car car face

As perceptual learning progresses, the estimates of signal and noise weights 
grow apart and so does their distance (absolute difference) on the real line.  
As a result, the readout of sensory evidence is increasingly enhanced, reflecting  
the improving ability to discriminate between perceptual stimuli in the  
course of training.

Whereas the magnitude of Estim was defined according to the percentage of 
phase coherence in the stimulus (0.325 and 0.375 for low- and high-coherence 
trials, respectively), its sign was related to stimulus category (positive for faces 
and negative for cars). This ensured that decision activities were a signed quantity, 
whose magnitude tracked the time-varying strength of stimulus representation.

Trial-by-trial estimates of the decision variable were computed based on the 
decision activity of the presented stimulus:

= ADV (5)i i
stim

Note that the decision variable too is a signed quantity, with positive values 
indicating a higher likelihood of a face choice and negative values indicating a 
higher likelihood of a car choice, and as such is directly comparable with the 
sign of our EEG discriminator component amplitudes, y. Correspondingly, both 
the model’s decision variables and our component amplitudes are orthogonal 
to potentially confounding quantities such as task (stimulus) difficulty, decision 
confidence (or uncertainty) and expected value, all of which covary with the 
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absolute value of DV and y (that is, both high positive and high negative DV and 
y values correspond to easier, more confident choices that therefore have higher 
expected value).

Subject-wise decision variable trajectories were then mapped to choice 
propensities (that is, probabilities) using a sigmoid function:

σ β=P ( (DV )) (6)i i
face

where σ(z) =  1/(1 +  e−z) is the sigmoid function and β the inverse of  
the temperature representing the degree of stochasticity in the decision  
function. Next, the expected value (EV) of the outcome on the same trial  
was computed based on the modulus (absolute value) of the decision variable 
as: σ β= | |EV ( ( DV ))i i . In other words, whereas high positive and high negative DV 
values (subjectively easier choices) increase the expected value of the outcome 
(and therefore the expected probability of being rewarded), values near zero 
(subjectively difficult choices) reduce it.

Finally, on each trial, given reward feedback r (coded as 1 and 0 for reward  
and no reward, respectively), perceptual weights were updated through a 
prediction error signal, δ = −r EVi i i, which quantified the degree of deviation 
between the actual and expected outcome, scaled by a learning-rate parameter 
α and an associativity component (E Ai i

stim choice) whose role was to dynamically 
modulate the updating of perceptual weights depending on the strength of sensory 
evidence (Estim) and the strength of the chosen stimulus representation (Achoice):

αδ

αδ

= +
= +

+

+
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where subscript \choice indicates the unchosen stimulus. Note that the signal 
weight of the unchosen stimulus and the noise weight of the chosen stimulus 
were not updated. The sign of the update was determined by the prediction error 
so that whereas correct choice trials resulted in an increase of signal weights 
and a decrease of noise weights, incorrect choice trials had an opposite effect 
on the updating of perceptual weights. For example, on a face trial, while a 
correct face choice would result in an increase of vface and a reduction of ncar, an 
incorrect car choice would yield an increase of ncar and a reduction of vface. The 
learning/unlearning of correct/incorrect sensory contingencies underpinned by 
this dynamic updating of perceptual weights was further aided by the strength 
of the stimulus representation Achoice. In other words, the stronger the stimulus 
representation, the greater the impact of the prediction error on perceptual 
learning (through the updating of perceptual weights) and vice versa.

We fitted two variants of this model, one with a single learning rate and one 
with two different learning rates for the updates to the signal and noise weights, 
respectively. The latter model allowed for the possibility that signal and noise 
weights may be differentially updated, therefore probing subject-specific biases 
in perceptual information processing. In other words, while some subjects might 
boost the signal-to-noise ratio for a given stimulus by primarily enhancing signal 
weights, others might achieve the same result by primarily reducing noise weights. 
Whereas the total number of free parameters in the first variant of the model was 
four ( β αv n, , , )1 1 , the number of free parameters in the second variant was five 
( β α αv n, , , , )1 1

face car  where v n,1 1 represent the initial estimates of the perceptual 
weights (that is, on the first trial) for face and car stimuli. In addition, we also fitted 
a simple perceptual reinforcement learning model (as described elsewhere14,17), 
whereby the readout of sensory evidence was scaled only by a signal weight and 
the trial-by-trial updating of this signal weight was driven by a prediction error 
computed as previously illustrated. The number of free parameters in this model 
was four ( β αv , bias, , )1  where ‘bias’ represents the indecision point in the  
choice sigmoid function.

Model fitting procedure and model comparison. To prevent overfitting, for 
each subject s we found the maximum a posteriori estimate of the model free 
parameters:

θ θ θ ξ= | |θ p C pargmax ( ) ( ) (8)s s s s
MAP

where p(Cs|θs) is the cross-entropy loss function between empirical and predicted 
choices Cs given the model parameters θs, and p(θs|ξ) is the prior distribution  
on the model parameters θs given the population-level hyperparameters ξ.  
Priors were defined as normal distributions N(μ,σ) where μ was sampled  
from a normal distribution with mean 0 and standard deviation 1, and σ was set  
to 100. To preserve the parameters’ natural bounds, log (β) and logit (α) transforms 
of the parameters were implemented.

We subsequently performed formal Bayesian model comparison between  
the three models to determine the one that best fitted our behavioural data.  
This approach treats each model as a random effect at the between-subject level 
and therefore is more robust to outliers than fixed-effect approaches69. Specifically, 
we first estimated the subject-wise Laplace-approximated log evidence for each 
model. We subsequently computed the model-wise exceedance probability (that 
is, how confident we are that a model is more likely than any other model tested) 

using SPM8’s spm_BMS routine70. We found that the exceedance probability  
of the model with two learning rates φ = .( 0 88) was greater than those of the 
models with a single learning rate φ = .( 0 11) and with a single perceptual  
weight φ = .( 0 001) (see histogram in Fig. 4a).

To assess the model’s goodness of fit we plotted the subject-wise empirical 
choice accuracy against the model’s predicted accuracy for different days and 
levels of stimulus phase coherence. Additionally, we tested whether the subject-
wise mean decision variables and perceptual weights as estimated by our model 
significantly increased over training as observed with behavioural performance.

Data availability. The data that support the findings of this study are available 
from the corresponding author upon request.
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