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To use sensory information efficiently tomake judgments

and guide action in the world, the brain must represent

anduse informationaboutuncertainty in itscomputations

for perception and action. Bayesianmethods have proven

successful in building computational theories for percep-

tion and sensorimotor control, and psychophysics is

providing a growing body of evidence that human

perceptual computations are ‘Bayes’ optimal’. This leads

to the ‘Bayesian coding hypothesis’: that the brain

represents sensory information probabilistically, in the

form of probability distributions. Several computational

schemes have recently been proposed for how this might

be achieved in populations of neurons. Neurophysio-

logical data on the hypothesis, however, is almost non-

existent. A major challenge for neuroscientists is to test

these ideas experimentally, and so determine whether

and how neurons code information about sensory

uncertainty.

Humans and other animals operate in a world of sensory
uncertainty. Although introspection tells us that percep-
tion is deterministic and certain, many factors contribute
to limiting the reliability of sensory information about the
world – the mapping of 3D objects into a 2D image, neural
noise introduced in early stages of sensory coding, and
structural constraints on neural representations and
computations (e.g. the density of receptors in the retina).
Our brains must effectively deal with the resulting
uncertainty to generate perceptual representations of
the world and to guide our actions. This leads naturally
to the idea that perception is a process of unconscious,
probabilistic inference [1,2]. Aided by developments in
statistics and artificial intelligence, researchers have begun
to apply the concepts of probability theory rigorously to
problems in biological perception and action [3–20]. One
striking observation from this work is the myriad ways in
which human observers behave as optimal Bayesian
observers. This observation, along with the behavioral
and computational work on which it is based, has
fundamental implications for neuroscience, particularly
in how we conceive of neural computations and the nature
of neural representations of perceptual and motor
variables.
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Bayesian inference and the Bayesian coding hypothesis

The fundamental concept behind the Bayesian approach
to perceptual computations is that the information
provided by a set of sensory data about the world is
represented by a conditional probability density function
over the set of unknown variables – the posterior density
function. A Bayesian perceptual system, therefore, would
represent the perceived depth of an object, for example,
not as a single number Z but as a conditional probability
density function p(Z/I), where I is the available image
information (e.g. stereo disparities). Loosely speaking,
p(Z/I) would specify the relative probability that the object
is at different depths Z, given the available sensory
information.

More generally, the component computations that
underlay Bayesian inferences [that give rise to p(Z/I)]
are ideally performed on representations of conditional
probability density functions rather than on unitary
estimates of parameter values. Loosely speaking, a
Bayes’ optimal system maintains, at each stage of local
computation, a representation of all possible values of the
parameters being computed along with associated prob-
abilities. This allows the system to integrate information
efficiently over space and time, to integrate information
from different sensory cues and sensory modalities, and to
propagate information from one stage of processing to
another without committing too early to particular
interpretations. Bayesian statisticians refer to the idea
of representing and propagating information in the form
of conditional density functions as belief propagation, and
this approach has been highly successful in designing
effective artificial vision systems [21–23].

To illustrate the basic structure of Bayesian compu-
tations, consider the problem of integrating multiple
sensory cues about some property of a scene. Figure 1
illustrates the Bayesian formulation of one such problem –
estimating the position of an object X from visual and
auditory cues V and A. The goal of an optimal, Bayesian
observer would be to compute the conditional density
function p(X/V,A). Using Bayes’ rule, this is given by

PðX=V;AÞZpðV ;A=XÞpðXÞ=pðV;AÞ (Equation 1)

where p(V,A/X) specifies the relative likelihood of sensing
the given data for different values of X and p(X) is the prior
probability of different values of X. Because the noise
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Figure 1. Two examples in which auditory and visual cues provide ‘conflicting’

information about the direction of a target. The conflict is apparent in the difference

in means of the likelihood functions associated with each cue, although the

functions overlap. Such conflicts are always present, owing to noise in the sensory

systems. To integrate visual and auditory information optimally, a multimodal area

must take into account the uncertainty associated with each cue. (a) When the

vision cue is most reliable, the peak of the posterior distribution is shifted toward

the direction suggested by the vision cue. (b) When the reliabilities of the cues are

more similar, for example when the stimulus is in the far periphery, the peak is

shifted toward the direction suggested by the auditory cue. When both likelihood

functions are Gaussian, the most likely direction of the target is given by a weighted

sum of the most likely directions (m) given the visual (V) and auditory (A) cues

individually: mV,AZwVmVCwAmA. The weights (w) are inversely proportional to the

variances of the likelihood functions.
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sources in auditory and visual mechanisms are statisti-
cally independent, we can decompose the likelihood
function into the product of likelihood functions associated
with the visual and auditory cues, respectively:

PðV;A=XÞZpðV=XÞpðA=XÞ (Equation 2)

p(V/X) and p(A/X) fully represent the information provided
by the visual and auditory data about the position of the
target. The posterior density function is therefore pro-
portional to the product of three functions: the likelihood
functions associated with each cue and the prior density
function representing the relative probability of the target
being at any given position. An optimal estimator could pick
the peak of the posterior density function, the mean of the
function or any of several other choices, depending on the
cost associated with making different types of errors [24].

For our purposes, the point of the example is that an
optimal integrator must take into account the relative
uncertainty of each cue when deriving an integrated
estimate. When one cue is less certain than another, the
integrated estimate should be biased toward the more
www.sciencedirect.com
reliable cue. Assuming that a system can accurately
compute and represent likelihood functions, the calcu-
lation embodied in equations 1 and 2 implicitly enforces
this behavior (Figure 1). Although other estimation
schemes can show the same performance as an optimal
Bayesian observer (e.g. a weighted sum of estimates
independently derived from each cue), computing with
likelihood functions provides the most direct means available
to account ‘automatically’ for the large range of differences in
cue uncertainty that an observer is likely to face.

This is the basic premise on which Bayesian theories of
cortical processing will succeed or fail – that the brain
represents information probabilistically, by coding and
computing with probability density functions or approxi-
mations to probability density functions. We will refer to
this as the ‘Bayesian coding hypothesis’. The opposing
view is that neural representations are deterministic and
discrete, which might be intuitive but also misleading.
This intuition might be due to the apparent ‘oneness’ of
our perceptual world and the need to ‘collapse’ perceptual
representations into discrete actions, such as decisions or
motor behaviors. The principle data on the Bayesian
coding hypothesis are behavioral results showing the
many different ways in which humans perform as
Bayesian observers.

Are human observers Bayes’ optimal?

What does it mean to say that an observer is ‘Bayes’
optimal’? Humans are clearly not optimal in the sense that
they achieve the level of performance afforded by the
uncertainty in the physical stimulus. Absolute efficiencies
(a measure of performance relative to a Bayes’ optimal
observer) for performing high-level perceptual tasks are
generally low and vary widely across tasks. In some cases,
this inefficiency is entirely due to uncertainty in the
coding of sensory primitives that serve as inputs to
perceptual computations [6]; in others, it is due to a
combination of sensory, perceptual and cognitive factors
[25]. The real test of the Bayesian coding hypothesis is in
whether the neural computations that result in perceptual
judgments or motor behavior take into account the
uncertainty in the information available at each stage of
processing. Psychophysical work in several areas suggests
that this is the case.

Cue integration

Perhaps the most persuasive evidence for the Bayesian
coding hypothesis comes from work on sensory cue
integration. When the uncertainty associated with each
of a set of cues is approximated by a Gaussian likelihood
function, the average estimate derived from an optimal
Bayesian integrator is a weighted average of the average
estimates that would be derived from each cue alone
(Figure 1). The reliability of different cues changes as a
function of many scene and viewing parameters (e.g. the
reliability of stereo disparity decreases with viewing
distance). When these parameters vary from trial to trial
in a psychophysical experiment, an optimal Bayesian
observer would appear to weight cues differently on
different trials. Studies of human cue integration, both
within modality (e.g. stereo and texture) [26–28] and
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across modality (e.g. sight and touch or sight and sound)
[29–32], consistently find cue weights that vary in the
manner predicted by Bayesian theory. Although these
results could be accounted for by a deterministic system
that adjusts cue weights as a function of viewing
parameters and stimulus properties that co-vary with
cue uncertainty, representing and computing with prob-
ability distributions (Figure 1) is considerably more
flexible and can accommodate novel stimulus changes
that alter cue uncertainty.

Non-linear Bayesian estimation

One of the strongest computational arguments for repre-
senting density functions in intermediate perceptual
computations is that they are often not Gaussian, so that
simple linear mechanisms do not suffice to support
optimal Bayesian calculations. Non-Gaussian likelihood
functions arise even when the sensory noise is Gaussian
as a result of the nonlinear mapping from sensory feature
space to the parameter space being estimated. In these
cases, computations on density functions (or likelihood
functions) are necessary to achieve optimality [33].

Figure 2 shows a simple example in the context of cue
integration. Changing the angle of a symmetric figure
within its plane (its spin), keeping the 3D orientation of
the plane itself fixed (imagine spinning a rectangle around
a rod oriented perpendicular to the rectangle), changes the
perceived 3D orientation of the plane, even when viewed
in stereo [16]. These spin-dependent biases are well
accounted for by a Bayesian model that optimally
combines skew symmetry information (represented by a
highly non-Gaussian likelihood function in Figure 2) with
stereoscopic information about 3D surface orientation.
The results would not be predicted by a deterministic
scheme of weighting the estimates derived from each cue
individually.

Perceptual biases and priors

Several recent studies on the role of prior models in
perception provide strong evidence for Bayesian compu-
tations of the type envisioned here [15,18]. Weiss and
Adelson’s [17] recent work on motion provides an
illustrative example. They propose a remarkably simple
Bayesian model of motion perception in which likelihood
functions derived from local, ambiguous motion measure-
ments are multiplied together with a simple prior that
biases interpretations to favor low speeds. The interplay
between the likelihood functions and the prior density
function leads to a complex pattern of directional biases
that depends on contrast, edge orientation and other
stimulus factors. The model predicts a surprisingly large
range of previously unintuitive motion phenomena,
suggesting that the brain could perform a similar
computation.

Uncertainty and the control of action

The previous examples were all based on the performance
of subjects in perceptual tasks. Sensory information,
however, primarily serves the function of guiding action
in the world. Researchers have recently begun developing
techniques for coupling optimal Bayesian estimators to
www.sciencedirect.com
control systems to maximize performance in motor tasks
[34]. In much the same way that sensory uncertainty
determines the optimal weighting scheme for combining
sensory cues for perceptual judgments, sensory and motor
uncertainties determine how sensory signals should be
used to plan and control movements.

Consider the problem of using sensory feedback from
the hand to guide online corrections of hand movements.
Because of noise in the motor system and in initial sensory
estimates of hand and target position, the movements of
an individual are never perfect. Visual feedback from the
moving hand should, in theory, be used to make small
adjustments to movement trajectories online. How much
an observer should trust the visual feedback, however,
depends on how reliable it is. For example, when the hand
is in the periphery of the visual field, visual estimates of
position will necessarily be worse than when it is in the
foveal area of the field (and near the target). Similarly, the
error in motion signals from the hand scales with velocity,
so that motion signals are least reliable around the point
of peak velocity. Recent psychophysical studies have
shown that humans use continuous feedback from the
hand to control pointing movements, but that the relative
contributions of different signals (e.g. position and
velocity) depend on the expected sensory noise associated
with those signals. Moreover, when noise is artificially
added to visual feedback about the position of the hand,
subjects optimally adjust the degree to which they rely on
the feedback to make corrections [14,35,36].

Likewise, how one plans movements should depend on
the intrinsic variability in the motor output and the costs
associated with various errors. Recent behavioral tests
have confirmed that motor plans take into account the
uncertainty in motor outputs: ballistic movement trajec-
tories effectively minimize the error in pointing move-
ments, given the signal-dependent properties of motor
noise [8], and when costs and gains for different aim points
are independently varied, subjects adjust their aim points
for fast pointing movements to maximize the expected gain
[19,20]. Although not definitive, these results suggest that
the brain uses knowledge of the uncertainty in the sensory
input and the motor output for visuomotor control.

Neural representations of uncertainty

The notion that neural computations take into account the
uncertainty of the sensory and motor variables raises two
important questions: (i) how do neurons, or rather
populations of neurons, represent uncertainty, and (ii)
what is the neural basis of statistical inferences? Several
schemes have been proposed over the past few years,
which we now briefly review.

Binary variables

The simplest schemes apply to binary variables – that is,
variables that can take only two states. This situation
arises when subjects are asked to decide between two
possibilities, such as whether an object is moving up or
down. In this case, the uncertainty of the variable can be
encoded in two ways. First, one can use two populations of
neurons: one in which neurons respond proportionally to
the probability of upward motion, and one in which they

http://www.sciencedirect.com


TRENDS in Neurosciences 

S
la

nt

Tilt

Tilt

Tilt

S
la

nt
S

la
nt

X

Tilt

Tilt

Tilt

X

Skew
likelihood

Stereo
likelihood

Combined
likelihood

(a) (b) BiasBias

45° –45°0° 45° –45°0°

45° –45°0° 45° –45°0°

45° –45°0° 45° –45°0°

30°

60°

90°

30°

60°

90°

30°

60°

90°

30°

60°

90°

30°

60°

90°

30°

60°

90°
II II

Figure 2. Skew symmetrical figures appear as figures slanted in depth because the brain assumes that they are projected from bilaterally symmetrical figures in the world. The

information provided by skew symmetry is given by the angle between the projected symmetry axes of a figure, shown at the top of each panel as solid lines superimposed

on the figure. Assuming that visual measurements of the orientations of these angles in the image are corrupted by Gaussian noise, one can compute a likelihood function for

3D surface orientation from skew. The result, as shown on the top two graphs, is highly non-Gaussian (darker points indicate higher likelihood values). The shape of the

likelihood function is highly dependent on the spin of the figure around its 3D surface normal. When combined with stereoscopic information from binocular disparities

(middle), an optimal estimator multiplies the likelihood functions associated with skew and stereo, as indicated by the ‘X’ between the top and middle panels, to produce a

posterior distribution for surface orientation (bottom) given both cues (assuming the prior on surface orientation is flat). This leads to the prediction that perceptual biases

will depend on the spin of the figure. It also leads to the somewhat counterintuitive prediction illustrated here that changing the slant suggested by stereo disparities should

change the perceived tilt of symmetric figures. (a) When binocular disparities suggest a slant greater than that from which a figure was projected, the posterior distribution is

shifted away from the orientation suggested by the disparities in both slant and tilt, creating a biased percept of the tilt of the figure. (b) The same figure, when binocular

disparities suggest a smaller slant, gives rise to a tilt bias in the opposite direction. This is exactly the pattern of behavior shown by subjects.
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respond to the probability of downward motion. An even
simpler scheme involves only one population in which
neurons respond proportionally to the ratio of upward and
downward motion, equivalent to a quantity known as a
likelihood ratio. Single-cell recordings in the lateral
intraparietal (LIP) area provide evidence for both
schemes. When monkeys are trained to perform one of
two possible saccades, a subset of LIP neurons respond
proportionally to the probability that the saccade ends in
their receptive field [37]. However, when monkeys are
trained to distinguish between two possible directions of
motion, some LIP neurons integrate information over time
ina wayconsistentwith the computation ofa likelihoodratio
[38]. Similar ideas have also been suggested to interpret
neuronal responses in the superior colliculus [39].
www.sciencedirect.com
Convolution codes and variations

When direction of motion is not confined to two choices,
but can take any value around a circle, the previous
schemes no longer work. Rather, the brain needs an
encoding mechanism that can deal with continuous
variables. As described previously, the most natural way
to represent uncertainty in a continuous variable is to
represent the probability density function of the variable
(Figure 3a). Any probability density function, p(x), can be
represented by its value at a few sample points along the x
axis. The more samples are used, the better the
approximation. This is the idea behind convolution
codes, except that convolution codes avoid gaps
between the samples by filtering p(x) with a Gaussian
kernel before sampling [40,41]. Each neuron simply
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probability density function in (a). Each dot corresponds to the activity of one neuron plotted at its preferred depth. The code is basically a set of samples of the probability

density function filtered, or convolved, by a Gaussian kernel. The width of this pattern of activity is related to the width of the function and, therefore, to the uncertainty of the

encoded variable. (c) Given two likelihood functions P(mjd) and P(sjd), and one prior distribution P(d), the posterior distribution over depth P(djm,s), is obtained by taking a

neuron-by-neuron product of the three distributions (neurons are indicated by shaded circles, ranked by their preferred depth). This scheme works only if the Gaussian kernel

used in the convolution code is a Dirac function, but it can easily be adapted to Gaussian kernels of any width [43]. Adapted from Ref. [46] q (2003) Annual Reviews (www.

annualreviews.org).
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computes the dot product between its Gaussian tuning
curve and the probability density function. Assuming that
the tuning curves of the neurons are just translated copies
of the same Gaussian profile, the resulting population
pattern of activity looks like the original probability
density function filtered by the Gaussian tuning curve.

Inferences with convolution codes are straightforward.
For instance, given motion and stereo disparity cues for
depth, one would like to compute the posterior density
function for depth conditioned on motion and stereo
information by multiplying the likelihood functions for
the observed motion of an object given its depth p(mjd)
with the observed pattern of horizontal disparities given
its depth p(sjd) and a prior distribution over depth. If
neurons represent samples of the likelihood functions and
the prior density function, a simple point-by-point product
operation between the two representations (Figure 3c) is
equivalent to multiplying the functions themselves [30,42]}.
In reality, this scheme works only when the tuning curves
of the neurons are Dirac functions (infinitely narrow
Gaussian tuning curves) but it can be easily extended to
www.sciencedirect.com
wider tuning curves [42,43]. This scheme has also been
applied to static and time-varying variables [40,44].

Another possibility for representing a probability
density function with a population code is to encode the
log of the probability density function, instead of the
function itself [45]. With this scheme, the point-by-point
product required for Bayesian inference with convolution
codes (Figure 3c) is replaced by a simple point-by-point
sum, because logs turn products into sums. Using sums is
appealing because of its simplicity and because it is
consistent with the way LIP neurons integrate (i.e. sum)
evidence over time [38].

Gain encoding

An alternative to the convolution code is to use what we
call a gain-encoding scheme [46,47]. This scheme takes
advantage of the near-Poisson nature of neural noise [48]
to code the mean and variance of a density function
simultaneously. To understand how the scheme works,
consider the example of orientation selectivity. The
primary visual cortex contains neurons with bell-shaped
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tuning curves for orientation [49]. If we rank the neurons
by their preferred orientations, the population response to
a trial of particular orientation q0 takes the form of a hill of
activity (Figure 4b). On any given trial, the shape of the
hill is corrupted by near-Poisson noise. To decode such
noisy population codes, one can use a Bayesian decoder
which returns the posterior distribution over q given the
hill of activity, p(qjA) [50,51]. For independent Poisson
noise, the posterior distribution is Gaussian, with its
mean controlled mostly by the position of the peak of the
hill and the variance inversely proportional to the gain of
the hill [46]. This is because, for Poisson noise, the
variance of the spike count is proportional to the gain.
This implies that the signal-to-noise ratio – the ratio of the
gain over the square root of the variance – grows with the
square root of the gain. Therefore, a high gain entails a
high signal-to-noise ratio, and a narrow posterior distri-
bution. Consequently, the noisy hill of activity can be
treated as a neural code for the posterior, with the position
of the peak encoding the mean, and the amplitude (or
gain) encoding the variance.

Deneve et al. [47] have designed a network architecture
that uses gain-encoding to perform optimal Bayesian
inferences. They applied their network to the problem of
locating an object based on its sound and image. On each
trial, the network is initialized with two noisy population
codes for the position of an object in visual and auditory
coordinates (Figure 5). It then performs two tasks. First, it
remaps the visual input into auditory coordinates and vice
versa, through a basis function layer. This is a prerequi-
site for combining these signals because the visual system
encodes the location of the object in retinal coordinates
whereas the auditory system uses head-centered coordi-
nates. The basis function units act as the building blocks
of the transformation: they compute Gaussian functions of
the visual and auditory input that are combined to
approximate both changes of coordinates, just as a set of
cubes can be combined to approximate any three dimen-
sional shape. Second, the network recovers the maximum
likelihood estimate of the object position given the visual
and auditory inputs (Figure 5). This computation is the
result of a relaxation process that turns the noisy population
codes into smooth hills of activity over time. For a particular
value of the network parameters, these smooth hills of
activity peak very close to the maximum likelihood estimate
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of the position. The cues are integrated with weights
proportional to their reliability because noisy hills with
high gain – corresponding to more reliable cues – provide a
stronger initial push and, as a result, have a stronger
influence of the final state of the network [47,52].

Although originally applied to object localization, this
architecture can be generalized to any cue integration
problem. In particular, this approach can be used to
account for the performance of human observers in the
experiments on cue integration [26–32]. The model can
also be extended to time varying problems, such as
estimating the position of a moving arm [4].

The gain-encoding model suggests a particularly intri-
guing role for Poisson variability. At first sight, it would
appear that this variability is highly detrimental and
severely limits the accuracy with which cortical circuits
perform computations. The gain-encoding idea suggests
that Poisson noise might in fact be very beneficial: it
allows population codes to represent the mean as well as
the variance of the encoded variables, the latter being
crucial for Bayesian inferences.

It is important to emphasize that the different encoding
schemes we have reviewed are not mutually exclusive.
Uncertainties can take many forms; for example, the
uncertainty due to photon noise in the retina has little to
do with the ambiguity due to the aperture problem in motion
processing. It is therefore possible that the brain uses
multiple encoding schemes. Ultimately, which schemes are
used in the brain can be answered only empirically. It is our
hope that the accumulation of behavioral data showing that
neural computation is akin to a Bayesian inference, and the
development of several models of Bayesian inference in
neural networks, will compel neurophysiologists to design
experiments to test the predictions of these models.
Discussion

We have described psychophysical evidence that shows
human observers to behave in a variety of ways like
optimal Bayesian observers. The most compelling features
of these data in regard to the Bayesian coding hypothesis
are: (i) that subjects implicitly ‘adjust’ cue weights in a
Bayes’ optimal way based on stimulus and viewing
parameters; (ii) that perceptual and motor behavior reflect
a system that takes into account the uncertainty of
both sensory and motor signals; (iii) that humans behave
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Figure 5. A basis function network for optimal cue integration between a visual and an auditory input. The network is tuned to perform two tasks simultaneously. Through the

basis function layer, eye-centered visual inputs (Xr) are remapped into auditory coordinates (head-centered) and vice versa (this requires knowledge of the position of the

eyes, which is encoded in a third population code, Xe). Over time, the network settles onto three smooth hills of activity, peaking in the final state at the location of the

maximum likelihood estimates of the eye-centered position (Sr) and the head-centered position (Sh) of the target and at the position of the eyes in the head (Se). This solution

takes into account the respective reliability of each of the cues, as expected for a maximum likelihood estimate. In the case illustrated here, the auditory input is less reliable

than the visual one, as indicated by the fact that the auditory hill has a reduced gain (top left). Adapted from Ref. [47].
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near-optimally even when the sensory information is
characterized by highly non-Gaussian density functions,
leading to complex patterns of predicted behavior; and (iv)
that relatively simple Bayesian models can account for
otherwise complex patterns of subjective, perceptual biases,
even when the prior density functions built into the models
do not explicitly code the biases. We argue that these data
strongly suggest that the brain codes even complex patterns
of sensory and motor uncertainty in its internal represen-
tations and computations. Two challenges for further
research emerge from this review.

First, although a growing body of psychophysical work is
being devoted to exploring the ways in which humans are
optimal observers and actors, an equally important chal-
lenge for future work is to find the ways in which human
observers are not optimal. Owing to the complexity of the
tasks, unconstrained Bayesian inference is not a viable
solution for computation in the brain. Recent work on
statistical learning, for example, has elucidated strong
limits on the types of statistical regularities that sensory
systems automatically detect [53–55].

Second, neuroscientists must begin to test theories of
how uncertainty could be represented in populations of
neurons. We have described several neural coding strat-
egies that might be used to encode probability density
www.sciencedirect.com
functions or their statistical moments; however, the
neurophysiological evidence for these schemes is weak.
This is not because existing data conflict with the
strategies but, rather, because little work has been done
to test them. Pursuing this challenge will require further
development and application of advanced multi-electrode
recording techniques. As these techniques mature, we
hope that neuroscientists will take up the challenge to
submit the Bayesian coding hypothesis to rigorous
falsification tests.

Finally, we acknowledge that the examples presented
here are much simpler than many of the perceptual
estimation problems faced by the brain. Most notable
among the complexities of these problems is their high
dimensionality (e.g. contour completion and flow field
estimation). Until recently, the problem of efficiently
representing and computing with probability density
functions in high-dimensional spaces has been a barrier
to developing efficient Bayesian computer vision algor-
ithms. The recent development of graphical models [22]
and particle filtering techniques [56,57] has shown the
most promise for implementing efficient Bayesian algor-
ithms for high-dimensional estimation problems. How
these might be implemented by the brain is a major
challenge for computational neuroscientists [58].

http://www.sciencedirect.com
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