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We first consider the nature and practise of mathematics®afaplying this to answer our question.

1 The nature of mathematics

Mathematics is a systematic method for structuring thoagltarguments, which is tied closely to a co-
herent body of associated knowledge. Mathematics has aaegycontinuous history: it arose to solve
practical problems of tax, accountancy and metrology inrexmately 2500BCE, [6]. Such problems
motivated the need for the development from arithmeticgelata, and the problems themselves often sur-
vive in a recognizable form today. Mathematics subsequeiatieloped into a number of sub-disciplines,
including pure mathematics, applied mathematics andsttati

1.1 Pureand applied mathematics

Applied mathematics, including statistics, solves protdeelevant to the real world. In simplified form,
applied mathematics proceeds by the following steps.

1. Information relevant to the problem must be identified selécted.
2. The relevant information is abstracted into a matherabficmulation. (Modelling)
3. Techniques, e.g. algebra or calculus, are applied t@$b&ymathematical formulation correctly.

4. The mathematical results are interpreted in terms of tiggnal problem.

These steps will be considered further in Section 1.2 below.

Pure mathematics is concerned with the study of mathenhaticatures for their own sake. This includes
the fundamental assumptions, e.g. the definition of “nusihen which the discipline is built. It examines
patterns, the consequences of assumptions and conndmtioveen different areas. Such patterns are often
beautiful, intriguing and surprising. Pure mathematiss @istifies when and how the standard algorithms
can be used correctly. For example, how to solve equatiod#ffefent types and how many solutions to
expect. These algorithms form the core of the subject anurgrertant cultural artifacts in their own right.
Learning to using these algorithms correctly is key to pesgiin learning mathematics.

Rather than attempt to distinguish between pure and appletematics we highlight the difference be-
tween deductive and empirical justification for truth. Thathematician justifies their work deductively
from stated hypotheses whereas the experimental scitolst for empirical evidence. Therefore, math-
ematicalproof of a result anddeductive justificatiorare central hallmarks of mathematics. The applied



mathematician needs to use and acknowledge both: chetiamglidity of a modelling assumption against
an observation of a physical system is an empirical process.

In both the pure and applied sphere, mathematicians oftemtidiscover their results by working deduc-

tively. They use analogy, intuition, experiment and theavious experience. Hence, the final product of
mathematical activity, i. e. the theorem together with jiteof, differs significantly from the process by

which it is discovered. See [5] and [4].

Mathematics is unusual in the extent to which one topic lsuditectly upon another. Progress can be
made without complete mastery of a prerequisite topic,aéddeis argued by e.g. [3] that important forms
of learning take place when a technique is used as part of @ owonplex process. Nevertheless, one of
the hallmarks of mathematics is very highly structured kieolge.

Statistics is similar to applied mathematics in that doitagistics involves: setting up a problem; planning
the statistical methodology; actual data collection; pn¢ation/analysis; followed by discussion/conclusions.
In cases where the evidence is gtatistically significanthe cycle needs to be re-visited. Notice, crucially,
that the statistical work precedes any data collection.

1.2 Problem solving

The first step to solving any problem is to identify the ret@vaformation, either from the problem itself or
from cultural knowledge, e.g. metrological units and pbgklaws. This is abstracted into a mathematical
formulation, for example as algebraic equations, geomegtationships or differential equations. During
the process, units and dimensional consistency provideludgecks and allow absurdities to be spotted.

When abstracting a given problem into a mathematical foati it is important to understand and adopt
appropriate conventions. For example, in algebra lettavaitds the beginning of the alphabetp, ¢, are
used to denotknown but as yet unspecified numbetsle those at the end, y, z are generally used for
unknown numbersvhich represent the solution to the problem in hand. Gepntetditionally uses the
following conventions:

1. pointsare upper case Roman lettess, B, C etc.;
2. linesor segmentsr curvesare lower case Roman letters,b, ¢ etc.;

3. anglesare Greek lettersy, 3, v etc.

Notice that in a trianglel BC' the side opposite, the point4, and
the anglex all correspond. Then it is immediately clear that “side
a in ABC” refers to the side opposité.

By using notation in conventional ways problems become much
easier to solve: it is much easier to recognize abstracgshivhen
written in standard forms. The consistent and confident fis@-0
tation in this way is an important part of professional pissect

Once a problem has been formulated standard techniquesecan b
applied, and this needs to be done accurately and corr¢tigre there is a choice of mathematical model
for a particular problem, the choices made in how the prohifeformulated has a direct bearing on the
difficulty of the resulting equations. Hence, in genuine elbdg situations knowledge of what types of
systems can be solved with the standard algorithms is kegdidohg how to set up a model. Furthermore,
experience with how to use these algorithms affects thag@eeays in which the problems are modelled.
A particular choice of coordinates can have a profound etiache difficulty of the resulting algebra, and
can make all the difference between success and failuredinfjrany solutions.

Historically, practical problems have provided much of thetivation for the development of the general
methods of pure mathematics. For example, a physical systeich is modelled by equations which



cannot be solved motivates a new area of research. Onceigireabsystem has been solved, pure mathe-
matical concerns generalize the techniques and seeksatmmseto apparently unrelated areas.

Once solutions have been derived, they need to be considBredxperiments with the original system
agree with solutions of the mathematical model? Do we rejeste solutions as irrelevant? What do the
solutions predict about the behaviour of the system?

2 Assessment of mathematics

To address our question, we shall work backward from tworttgoirtant goals of mathematics education to
consider good summative assessment. Summative assessiikaty to differ significantly from effective
formative assessment. We do not comment here on formatiseadmative assessment.

2.1 Goalsof mathematics education
Two important goals of mathematics education are

1. Anunderstanding of the importance of pure mathematicskasral heritage. This includes beautiful
patterns, systems for logically structuring thought, sisipg theorems together with the proofs, and
intriguing connections.

2. Developing techniques for solving real problems, andidence and experience in doing so.
Individuals will differ in their motivation and tastes, as@ education should balance both goals. Few

individuals take a serious interest pure mathematics, laumyrmore enjoy puzzles. A much larger number
of people need to solve problems. Employers often ask thpi®mes should have

1. a good grasp of the basics;
2. agood grasp of numerical solutions;

3. agreater ability to set up a model from scratch.

2.2 Summative assessment

Overarching principle: assessment of mathematics should reflect mathematicaigerac

We shall try to be more specific in highlighting important@sfs of mathematical practise. These aspects
will form parts of “good” assessment in mathematics.

Principle 1. mathematicians solve problems.

Mathematical practise is concerned with finding solutianprioblems, whether related to practical prob-
lems (applied) or internal (pure). If assessment of stuglisrb reflect practise then problem solving must
be a key part of the assessment.

There is a spectrum of problems from entirely routine situet to those where a particular insight is
applicable only in one case. Naturally, a range will be gelkto test the full spectrum of understanding.
In summative assessment it is not sufficient only to ask stisd® apply standard techniques to given
equations. They are not “problems” in our sense, but praetxercises. Exercises are perfectly appropriate
in the formative stages of learning, but they do not constithe product of practise. Equally, problems
should avoid special tricks.



In a good assessment problem it should be clear when thectsalation has been found through straight-
forward internal checks. Assessments which ask a studeestify a given solution are not problem solving
and are inherently less satisfactory.

Principle 2: mathematicians justify their solutions. The outcome oftreatatics is a correct
chain of reasoning, from agreed hypotheses to a conclusion.

Extended chains of reasoning should be assessed. Simpiime;cexercises are described by [2lsagyle
piece jigsaws It is the justification which is as important as the answemathematics. Indeed, in pure
mathematics the answer may be “obvious”, but it might be fihid difficult to justify.

We note thaguess and cheak trial and improvemendre not appropriate techniques for summative assess-
ment. In numerical analysis there are many algorithms whigterficially resemble trial and improvement,
by iterating towards a correct solution. Thrathematiceomes in justifying they converge and the limit to
which they converge is the required solution.

Principle 3: accuracy is important.

An explicit consequence of this principle is the need fodetts to correctly link together multiple steps
of calculation and reasoning. A student who makes a mistadwever “trivial”, in every other step has
achieved little, if anything, of any merit. It is far bette@rfstudents to achieve accurate mastery of simpler
techniques then to have vague and erroneous notions from adeanced areas.

Pure mathematics does not recognize “half a proof”; thezenarmethod marks in industry.

Principle 4: standard algorithms are both useful and are importantr@llautifacts in their
own right.

It is important to assess (i) an understanding of when it isexd to apply such algorithms; (ii) an under-
standing of the details of how the algorithm works; (iii) drilily to use the algorithm accurately. Many
standard algorithms can be automated, e.g. arithmetic @hcalator or more advanced operations on a
computer algebra system. In order to assess (i) and (i) niecessary for work to be written long-hand and
not for many steps to be compressed. A consequence of thiatistme summative assessments should
be technology free, while others may make full use of thelalsbg technology, e.g. graphical calculators.

Details of the special cases are important — this reinfotitesieed to assess understanding of when an
algorithm is really appropriate. For example, we shouldiconwhether students understand why “division
by zero” is forbidden as the following question illustrates

v Example 1

Crititize the following argument. Suppose= b thenab = a2, and soab — b> = a? — b2. Factoring gives
b(a — b) = (a + b)(a — b). Cancelling give$ = a + b. Sincea = b we haveh = 2b. Hencel = 2.

Principle 5: conventions should be distinguished from consequences.

Using conventions allows a problem to be recognized as omhitch a standard technique can be applied.
This is a key step in problem solving at all levels and so ipisrapriate that it forms part of any assessment.
However, conventions should be distinguished from logamaisequences of assumptions. If a student
chooses not to follow conventions and yet is clear and coiméhbeir reasoning then the assessment criteria
should accommaodate this.



3 Traditional word problems

We consider only summative assessment of mathematics nétedeproject work has proved to be very
difficult to assess: impersonation or plagiarism are serjgnactical problems which cannot be ignored.
Hence, we shall assume the format is the unseen, writteedtaramination. Therefore we really answer
the following question.

What constitutes good unseen examination questions inemiics?

The practise of mathematics detailed above might appealdsgly ambitious and out of touch with what

is achievable in school mathematics. We npeablemswhich allow extended reasoninghereaccurate
work can be judged. The solutions should make usewtfne mathematical techniquaad where students
can adopimathematicians’ conventiondNe argue that traditional word problems possess many of the
features of mathematical practise and that they can be usedray levels in schools. Hence, we argue
they play an important role in “good assessment”. This viewidely supported.

I hope | shall shock a few people in asserting that the mosbitapt single task of mathemat-
ical instruction in the secondary school is to teach therggtip of equations to solve word
problems. [...] And so the future engineer, when he learthénsecondary school to set up
equations to solve “word problems” has a first taste of, argdamaopportunity to acquire the
attitude essential to, his principal professional use ahmaatics. [5, Vol. I, p.g. 59]

The following is a rather contrived example (see [7, Ex 68)]¢#

v Example 2

A dog starts in pursuit of a hare at a distance36fof his own leaps from her. He takg$eaps while she
takes6 but covers as much ground tnas she ir. In how many leaps of each will the hare be caught?

Or the ubiquitous

v Example 3

A rectangle has lengtBcm greater than its width. If it has an area 88cm?, find the dimensions of the
rectangle.

Interpreting such problems to derive the correct equati®ffar from easy: problems involving rates are
particularly difficult.

v Example4

Alice and Bob tak& hours to dig a hole together. Bob and Chris takkours to dig the hole. Chris and
Alice take4 hours to dig the same hole. How long would all three of there taérking together?

The temptation is to model the work of Alice and Boh4as$ B = 2, ratherthamd + B = % There are real
difficulties in reaching a correct interpretation, and heimamoving from a word problem to a mathematical
system which represents it. Consider a problem relatedutodifferent from, 4 in which pairs of people
“walk into town”, rather than “dig a hole”. Hence, we arguattmoving from such word problems to
mathematical systems constitute the beginning of matheatatodelling and hence is a valid component
of pratcise. Similar conceptual difficulties occur with centration and dilution problems. But, such

problems can be practiced, and specifications in curricuteenisure tricks are not used in examinations.



Word problems immediately turn a single-step mathemadigaicise into a multi-step chain of reasoning.
In Example 2, lef be the number of leaps taken by the dog. The problem redusedving

6 2

l=-x =1+ 30.

5 X 3 +
This is a simple linear equation, but it can only be arrivedyatareful work on the part of the student. In
Example 3 the student s free to choose either the lengthdihwif the rectangle as a variable. Ignoring the
particular letter used for the variable, this choice ressimlbne of two different equations, i« +8) = 33
or z(x — 8) = 33. One solution must be discarded as “unrealistic”: a vakabtical judgement by the
student.

Being able to select and correctly use standard techniqesapposed a certain level of fluency, which only
comes with practice. Seeing the practise of mathematiel$ &s solving real problems through modelling,
and thus understanding the satisfaction of dispatchingahtne steps accurately and efficiently, may act
as motivation for students to undertake the repetitive wadded for the acquisition of skills.

Problem solving is difficult. It is perfectly reasonable dasignificantly challenging, to ask students to
abstract information from a word problem; formulate it @stonventions; recognize this as a standard
case for which a known technique is applicable; and acdyrstéve the equations.

The use of word problems has been the subject of much reseandtheir use is controversial. Traditional
word problems assume a certain level of cultural knowledlgeatever the purpose of word problems, they
are certainly not intended as a test of such cultural knogdedVe reasonably expect all students to be
familiar with the Sl system of metrology, time and currenepwever, students may not be familiar with
the rules of sports, or other games. Hence, when used as div@assessments due consideration needs
to be given to ensure all students are treated equitably.

If word problems are “abstract” and decontextualized tihery ppear contrived, divorced from reality and
even ridiculous. However, the analysis of [1] found thatigbdass was a significant factor in determining
childrens performance. In particular they report thatrking class students performed equally as well as
their middle class counterparts on decontextualised tests but struggled on realistic items which were
embedded in everyday contexts”

Word problem have many features which correspond to theipeaaf mathematics. Their use in summa-
tive mathematics examinations requires care to ensurerthttematical practise, rather than cultural or
social background, is really the focus of assessment. Heaceis needed, as ever, with the precise details
of how the problems themselves are formulated and used.
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