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We first consider the nature and practise of mathematics before applying this to answer our question.

1 The nature of mathematics

Mathematics is a systematic method for structuring thoughtand arguments, which is tied closely to a co-
herent body of associated knowledge. Mathematics has a verylong continuous history: it arose to solve
practical problems of tax, accountancy and metrology in approximately 2500BCE, [6]. Such problems
motivated the need for the development from arithmetic to algebra, and the problems themselves often sur-
vive in a recognizable form today. Mathematics subsequently developed into a number of sub-disciplines,
including pure mathematics, applied mathematics and statistics.

1.1 Pure and applied mathematics

Applied mathematics, including statistics, solves problems relevant to the real world. In simplified form,
applied mathematics proceeds by the following steps.

1. Information relevant to the problem must be identified andselected.

2. The relevant information is abstracted into a mathematical formulation. (Modelling)

3. Techniques, e.g. algebra or calculus, are applied to solve the mathematical formulation correctly.

4. The mathematical results are interpreted in terms of the original problem.

These steps will be considered further in Section 1.2 below.

Pure mathematics is concerned with the study of mathematical structures for their own sake. This includes
the fundamental assumptions, e.g. the definition of “numbers”, on which the discipline is built. It examines
patterns, the consequences of assumptions and connectionsbetween different areas. Such patterns are often
beautiful, intriguing and surprising. Pure mathematics also justifies when and how the standard algorithms
can be used correctly. For example, how to solve equations ofdifferent types and how many solutions to
expect. These algorithms form the core of the subject and areimportant cultural artifacts in their own right.
Learning to using these algorithms correctly is key to progress in learning mathematics.

Rather than attempt to distinguish between pure and appliedmathematics we highlight the difference be-
tween deductive and empirical justification for truth. The mathematician justifies their work deductively
from stated hypotheses whereas the experimental scientistlooks for empirical evidence. Therefore, math-
ematicalproof of a result anddeductive justificationare central hallmarks of mathematics. The applied
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mathematician needs to use and acknowledge both: checking the validity of a modelling assumption against
an observation of a physical system is an empirical process.

In both the pure and applied sphere, mathematicians often donot discover their results by working deduc-
tively. They use analogy, intuition, experiment and their previous experience. Hence, the final product of
mathematical activity, i. e. the theorem together with it’sproof, differs significantly from the process by
which it is discovered. See [5] and [4].

Mathematics is unusual in the extent to which one topic builds directly upon another. Progress can be
made without complete mastery of a prerequisite topic, indeed it is argued by e.g. [3] that important forms
of learning take place when a technique is used as part of a more complex process. Nevertheless, one of
the hallmarks of mathematics is very highly structured knowledge.

Statistics is similar to applied mathematics in that doing statistics involves: setting up a problem; planning
the statistical methodology; actual data collection; presentation/analysis; followed by discussion/conclusions.
In cases where the evidence is notstatistically significantthe cycle needs to be re-visited. Notice, crucially,
that the statistical work precedes any data collection.

1.2 Problem solving

The first step to solving any problem is to identify the relevant information, either from the problem itself or
from cultural knowledge, e.g. metrological units and physical laws. This is abstracted into a mathematical
formulation, for example as algebraic equations, geometric relationships or differential equations. During
the process, units and dimensional consistency provide useful checks and allow absurdities to be spotted.

When abstracting a given problem into a mathematical formulation it is important to understand and adopt
appropriate conventions. For example, in algebra letters towards the beginning of the alphabet,a, b, c, are
used to denoteknown but as yet unspecified numberswhile those at the endx, y, z are generally used for
unknown numbers, which represent the solution to the problem in hand. Geometry traditionally uses the
following conventions:

1. pointsare upper case Roman letters,A, B, C etc.;

2. linesor segmentsor curvesare lower case Roman letters,a, b, c etc.;

3. anglesare Greek letters,α, β, γ etc.

b
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β
γ

Notice that in a triangleABC the side opposite,a, the pointA, and
the angleα all correspond. Then it is immediately clear that “side
a in ABC” refers to the side oppositeA.

By using notation in conventional ways problems become much
easier to solve: it is much easier to recognize abstract things when
written in standard forms. The consistent and confident use of no-
tation in this way is an important part of professional practise.

Once a problem has been formulated standard techniques can be
applied, and this needs to be done accurately and correctly.Where there is a choice of mathematical model
for a particular problem, the choices made in how the problemis formulated has a direct bearing on the
difficulty of the resulting equations. Hence, in genuine modelling situations knowledge of what types of
systems can be solved with the standard algorithms is key in deciding how to set up a model. Furthermore,
experience with how to use these algorithms affects the precise ways in which the problems are modelled.
A particular choice of coordinates can have a profound effect on the difficulty of the resulting algebra, and
can make all the difference between success and failure in finding any solutions.

Historically, practical problems have provided much of themotivation for the development of the general
methods of pure mathematics. For example, a physical systemwhich is modelled by equations which
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cannot be solved motivates a new area of research. Once the original system has been solved, pure mathe-
matical concerns generalize the techniques and seeks connections to apparently unrelated areas.

Once solutions have been derived, they need to be considered. Do experiments with the original system
agree with solutions of the mathematical model? Do we rejectsome solutions as irrelevant? What do the
solutions predict about the behaviour of the system?

2 Assessment of mathematics

To address our question, we shall work backward from two the important goals of mathematics education to
consider good summative assessment. Summative assessmentis likely to differ significantly from effective
formative assessment. We do not comment here on formative orevaluative assessment.

2.1 Goals of mathematics education

Two important goals of mathematics education are

1. An understanding of the importance of pure mathematics ascultural heritage. This includes beautiful
patterns, systems for logically structuring thought, surprising theorems together with the proofs, and
intriguing connections.

2. Developing techniques for solving real problems, and confidence and experience in doing so.

Individuals will differ in their motivation and tastes, andso education should balance both goals. Few
individuals take a serious interest pure mathematics, but many more enjoy puzzles. A much larger number
of people need to solve problems. Employers often ask that employees should have

1. a good grasp of the basics;

2. a good grasp of numerical solutions;

3. a greater ability to set up a model from scratch.

2.2 Summative assessment

Overarching principle: assessment of mathematics should reflect mathematical practise.

We shall try to be more specific in highlighting important aspects of mathematical practise. These aspects
will form parts of “good” assessment in mathematics.

Principle 1: mathematicians solve problems.

Mathematical practise is concerned with finding solutions to problems, whether related to practical prob-
lems (applied) or internal (pure). If assessment of students is to reflect practise then problem solving must
be a key part of the assessment.

There is a spectrum of problems from entirely routine situations to those where a particular insight is
applicable only in one case. Naturally, a range will be selected to test the full spectrum of understanding.
In summative assessment it is not sufficient only to ask students to apply standard techniques to given
equations. They are not “problems” in our sense, but practice exercises. Exercises are perfectly appropriate
in the formative stages of learning, but they do not constitute the product of practise. Equally, problems
should avoid special tricks.
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In a good assessment problem it should be clear when the correct solution has been found through straight-
forward internal checks. Assessments which ask a student toverify a given solution are not problem solving
and are inherently less satisfactory.

Principle 2: mathematicians justify their solutions. The outcome of mathematics is a correct
chain of reasoning, from agreed hypotheses to a conclusion.

Extended chains of reasoning should be assessed. Simple, routine, exercises are described by [2] assingle
piece jigsaws. It is the justification which is as important as the answer inmathematics. Indeed, in pure
mathematics the answer may be “obvious”, but it might be fiendishly difficult to justify.

We note thatguess and checkor trial and improvementare not appropriate techniques for summative assess-
ment. In numerical analysis there are many algorithms whichsuperficially resemble trial and improvement,
by iterating towards a correct solution. Themathematicscomes in justifying they converge and the limit to
which they converge is the required solution.

Principle 3: accuracy is important.

An explicit consequence of this principle is the need for students to correctly link together multiple steps
of calculation and reasoning. A student who makes a mistake,however “trivial”, in every other step has
achieved little, if anything, of any merit. It is far better for students to achieve accurate mastery of simpler
techniques then to have vague and erroneous notions from more advanced areas.

Pure mathematics does not recognize “half a proof”; there are no method marks in industry.

Principle 4: standard algorithms are both useful and are important cultural artifacts in their
own right.

It is important to assess (i) an understanding of when it is correct to apply such algorithms; (ii) an under-
standing of the details of how the algorithm works; (iii) an ability to use the algorithm accurately. Many
standard algorithms can be automated, e.g. arithmetic on a calculator or more advanced operations on a
computer algebra system. In order to assess (i) and (ii), it is necessary for work to be written long-hand and
not for many steps to be compressed. A consequence of this is that some summative assessments should
be technology free, while others may make full use of the available technology, e.g. graphical calculators.

Details of the special cases are important – this reinforcesthe need to assess understanding of when an
algorithm is really appropriate. For example, we should confirm whether students understand why “division
by zero” is forbidden as the following question illustrates.

H Example 1

Crititize the following argument. Supposea = b thenab = a2, and soab − b2 = a2
− b2. Factoring gives

b(a − b) = (a + b)(a − b). Cancelling givesb = a + b. Sincea = b we haveb = 2b. Hence1 = 2.

Principle 5: conventions should be distinguished from consequences.

Using conventions allows a problem to be recognized as one towhich a standard technique can be applied.
This is a key step in problem solving at all levels and so it is appropriate that it forms part of any assessment.
However, conventions should be distinguished from logicalconsequences of assumptions. If a student
chooses not to follow conventions and yet is clear and correct in their reasoning then the assessment criteria
should accommodate this.
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3 Traditional word problems

We consider only summative assessment of mathematics. Extended project work has proved to be very
difficult to assess: impersonation or plagiarism are serious practical problems which cannot be ignored.
Hence, we shall assume the format is the unseen, written, timed examination. Therefore we really answer
the following question.

What constitutes good unseen examination questions in mathematics?

The practise of mathematics detailed above might appear hopelessly ambitious and out of touch with what
is achievable in school mathematics. We needproblemswhich allowextended reasoningwhereaccurate
work can be judged. The solutions should make use ofroutine mathematical techniquesand where students
can adoptmathematicians’ conventions. We argue that traditional word problems possess many of the
features of mathematical practise and that they can be used at many levels in schools. Hence, we argue
they play an important role in “good assessment”. This view is widely supported.

I hope I shall shock a few people in asserting that the most important single task of mathemat-
ical instruction in the secondary school is to teach the setting up of equations to solve word
problems. [...] And so the future engineer, when he learns inthe secondary school to set up
equations to solve “word problems” has a first taste of, and has an opportunity to acquire the
attitude essential to, his principal professional use of mathematics. [5, Vol. I, p.g. 59]

The following is a rather contrived example (see [7, Ex 65, (44)]).

H Example 2

A dog starts in pursuit of a hare at a distance of30 of his own leaps from her. He takes5 leaps while she
takes6 but covers as much ground in2 as she in3. In how many leaps of each will the hare be caught?

Or the ubiquitous

H Example 3

A rectangle has length8cm greater than its width. If it has an area of33cm2, find the dimensions of the
rectangle.

Interpreting such problems to derive the correct equationsis far from easy: problems involving rates are
particularly difficult.

H Example 4

Alice and Bob take2 hours to dig a hole together. Bob and Chris take3 hours to dig the hole. Chris and
Alice take4 hours to dig the same hole. How long would all three of them take working together?

The temptation is to model the work of Alice and Bob asA+B = 2, rather thanA+B = 1

2
. There are real

difficulties in reaching a correct interpretation, and hence in moving from a word problem to a mathematical
system which represents it. Consider a problem related to, but different from, 4 in which pairs of people
“walk into town”, rather than “dig a hole”. Hence, we argue that moving from such word problems to
mathematical systems constitute the beginning of mathematical modelling and hence is a valid component
of pratcise. Similar conceptual difficulties occur with concentration and dilution problems. But, such
problems can be practiced, and specifications in curricula can ensure tricks are not used in examinations.
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Word problems immediately turn a single-step mathematicalexercise into a multi-step chain of reasoning.
In Example 2, letl be the number of leaps taken by the dog. The problem reduces tosolving

l =
6

5
×

2

3
l + 30.

This is a simple linear equation, but it can only be arrived atby careful work on the part of the student. In
Example 3 the student is free to choose either the length or width of the rectangle as a variable. Ignoring the
particular letter used for the variable, this choice results in one of two different equations, i.e.x(x+8) = 33
or x(x − 8) = 33. One solution must be discarded as “unrealistic”: a valuable critical judgement by the
student.

Being able to select and correctly use standard techniques presupposed a certain level of fluency, which only
comes with practice. Seeing the practise of mathematics itself as solving real problems through modelling,
and thus understanding the satisfaction of dispatching theroutine steps accurately and efficiently, may act
as motivation for students to undertake the repetitive workneeded for the acquisition of skills.

Problem solving is difficult. It is perfectly reasonable, and significantly challenging, to ask students to
abstract information from a word problem; formulate it using conventions; recognize this as a standard
case for which a known technique is applicable; and accurately solve the equations.

The use of word problems has been the subject of much research, and their use is controversial. Traditional
word problems assume a certain level of cultural knowledge.Whatever the purpose of word problems, they
are certainly not intended as a test of such cultural knowledge. We reasonably expect all students to be
familiar with the SI system of metrology, time and currency.However, students may not be familiar with
the rules of sports, or other games. Hence, when used as summative assessments due consideration needs
to be given to ensure all students are treated equitably.

If word problems are “abstract” and decontextualized then they appear contrived, divorced from reality and
even ridiculous. However, the analysis of [1] found that social class was a significant factor in determining
childrens performance. In particular they report that“working class students performed equally as well as
their middle class counterparts on decontextualised test items but struggled on realistic items which were
embedded in everyday contexts”.

Word problem have many features which correspond to the practise of mathematics. Their use in summa-
tive mathematics examinations requires care to ensure thatmathematical practise, rather than cultural or
social background, is really the focus of assessment. Hence, care is needed, as ever, with the precise details
of how the problems themselves are formulated and used.
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